Multiscale finite-volume method for compressible multiphase flow in porous media
نویسندگان
چکیده
The Multiscale Finite-Volume (MSFV) method has been recently developed and tested for multiphase-flow problems with simplified physics (i.e. incompressible flow without gravity and capillary effects) and proved robust, accurate and efficient. However, applications to practical problems necessitate extensions that enable the method to deal with more complex processes. In this paper we present a modified version of the MSFV algorithm that provides a suitable and natural framework to include additional physics. The algorithm consists of four main steps: computation of the local basis functions, which are used to extract the coarse-scale effective transmissibilities; solution of the coarse-scale pressure equation; reconstruction of conservative fine-scale fluxes; and solution of the transport equations. Within this framework, we develop a MSFV method for compressible multiphase flow. The basic idea is to compute the basis functions as in the case of incompressible flow such that they remain independent of the pressure. The effects of compressibility are taken into account in the solution of the coarse-scale pressure equation and, if necessary, in the reconstruction of the fine-scale fluxes. We consider three models with an increasing level of complexity in the flux reconstruction and test them for highly compressible flows (tracer transport in gas flow, imbibition and drainage of partially saturated reservoirs, depletion of gas– water reservoirs, and flooding of oil–gas reservoirs). We demonstrate that the MSFV method provides accurate solutions for compressible multiphase flow problems. Whereas slightly compressible flows can be treated with a very simple model, a more sophisticate flux reconstruction is needed to obtain accurate fine-scale saturation fields in highly compressible flows. 2006 Elsevier Inc. All rights reserved.
منابع مشابه
Adaptive Multiscale Finite-Volume Method for Multiphase Flow and Transport in Porous Media
We present a multiscale finite-volume (MSFV) method for multiphase flow and transport in heterogeneous porous media. The approach extends our recently developed MSFV method for single-phase flow. We use a sequential scheme that deals with flow (i.e., pressure and total velocity) and transport (i.e., saturation) separately and differently. For the flow problem, we employ two different sets of ba...
متن کاملIterative Multiscale Finite Volume Method for Multiphase Flow in Porous Media with Complex Physics
In this thesis, the multiscale finite-volume (MSFV) method for the solution of elliptic problems is extended to an efficient iterative algorithm that converges to the fine-scale numerical solution. The localization errors in the MSFV method are systematically reduced by updating the local boundary conditions with global information. This iterative multiscale finite-volume (i-MSFV) method allows...
متن کاملAdaptive Algebraic Multiscale Solver for Compressible Flow in Heterogeneous Porous Media
This paper presents the development of an Adaptive Algebraic Multiscale Solver for Compressible flow (C-AMS) in heterogeneous porous media. Similar to the recently developed AMS for incompressible (linear) flows [Wang et al., JCP, 2014], C-AMS operates by defining primal and dual-coarse blocks on top of the fine-scale grid. These coarse grids facilitate the construction of a conservative (finit...
متن کاملEfficiency Study of the Multiscale Finite Volume Formulation for Multiphase Flow and Transport a Report Submitted to the Department of Energy Resources Engineering of Stanford University in Partial Fulfillment of the Requirements for the Degree of Master of Science
Multiscale methods have been developed to solve multiphase flow and transport problems in large-scale heterogeneous porous media accurately and efficiently. In this report, the computational efficiency of the multiscale finite-volume method (MSFV) is analyzed. The power of MSFV lies in its ability to combine local basis functions with a global coarse-scale problem to solve highly details hetero...
متن کاملModelling two-phase flow in porous media at the pore scale using the volume-of-fluid method
We present a stable numerical scheme for modelling multiphase flow in porous media, where the characteristic size of the flow domain is of the order of microns to millimetres. The numerical method is developed for efficient modelling of multiphase flow in porous media with complex interface motion and irregular solid boundaries. The Navier–Stokes equations are discretised using a finite volume ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 216 شماره
صفحات -
تاریخ انتشار 2006